Exact Multiplicity Result for the Perturbed Scalar Curvature Problem in R N ( N ≥ 3 )

نویسندگان

  • David S. Tartakoff
  • S. PRASHANTH
چکیده

Let D1,2(RN ) denote the closure of C∞ 0 (R N ) in the norm ‖u‖2 D1,2(RN ) = ∫ RN |∇u|2. Let N ≥ 3 and define the constants αN = N(N − 2) and CN = (N(N − 2)) N−2 4 . Let K ∈ C2(RN ). We consider the following problem for ε ≥ 0 : (Pε) ⎪⎨⎪⎩ Find u ∈ D1,2(RN ) solving : −∆u = αN (1 + εK(x))u N+2 N−2 , u > 0 } in RN . We show an exact multiplicity result for (Pε) for all small ε > 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Weingarten hypersurfaces in a unit sphere

In this paper, by modifying Cheng-Yau$'$s technique to complete hypersurfaces in $S^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [H. Li, Hypersurfaces with constant scalar curvature in space forms, {em Math. Ann.} {305} (1996), 665--672].  

متن کامل

Solution of Vacuum Field Equation Based on Physics Metrics in Finsler Geometry and Kretschmann Scalar

The Lemaître-Tolman-Bondi (LTB) model represents an inhomogeneous spherically symmetric universefilledwithfreelyfallingdustlikematterwithoutpressure. First,wehaveconsideredaFinslerian anstaz of (LTB) and have found a Finslerian exact solution of vacuum field equation. We have obtained the R(t,r) and S(t,r) with considering establish a new solution of Rµν = 0. Moreover, we attempttouseFinslergeo...

متن کامل

Exact Multiplicity for Boundary Blow-up Solutions

The singularly perturbed boundary blow-up problem −ε2∆u = u(u− a)(1− u) u > 0 in B, u = ∞ on ∂B is studied in the unit ball B ⊂ R (N ≥ 2), a ∈ (1/2, 1) is a constant. It is shown that there exist exactly three positive solutions for the problem and all of them are radially symmetric solutions.

متن کامل

Prescribed Scalar Curvature problem on Complete manifolds

Conditions on the geometric structure of a complete Riemannian manifold are given to solve the prescribed scalar curvature problem in the positive case. The conformal metric obtained is complete. A minimizing sequence is constructed which converges strongly to a solution. In a second part, the prescribed scalar curvature problem of zero value is solved which is equivalent to find a solution to ...

متن کامل

Prescribing Scalar Curvature on Sn and Related Problems , Part 11 : Existence and Compactness YANYAN

This is a sequel to [30], which studies the prescribing scalar curvature problem on S". First we present some existence and compactness results for n = 4. The existence result extends that of Bahri and Coron [4], Benayed, Chen, Chtioui, and Hammami [6], and Zhang [39]. The compactness results are new and optimal. In addition, we give a counting formula of all solutions. This counting formula, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006